
Reusing a Simulation Facility Software Architecture for Embedded Simulation

Frank A. Cioch
Computing and Software Systems
University of Washington, Bothell

Box 358534
18115 Campus Way N.E.
Bothell, WA 98011-8246

(425) 352-5495
cioch@u.washington.edu

Scott Lohrer

Vetronics Technology Center
U.S. Army Tank-Automotive and Armaments Command

AMSTA-TR-R MS 264
Warren, MI 48397-5000

 (810) 574-5035
lohrers@tacom.army.mil

Keywords
reuse, legacy systems, evolvability, long-lived systems, technology transfer, software
architecture, embedded simulation, distributed simulation, middleware, architectural degradation

Abstract
In 1992 we began the development of a ground vehicle simulation software architecture that was
specifically designed for evolvability. This architecture along with its supporting development
processes and standards was reused throughout the 1990’s on a variety of Army programs. We
have now taken this software architecture, which was designed for stationary simulation in
crewstations in a laboratory environment and reused it to add embedded simulation capabilities
to fielded ground vehicles.

The purpose of embedded simulation is to enhance soldier effectiveness both before and during
actual battlefield conditions. As a result, in a fielded ground vehicle, the computer specialist
responsible for setting up, starting, controlling, monitoring and stopping the simulation is not
present. Unlike in a laboratory environment, in a fielded vehicle the simulation software itself is
responsible for performing these functions.

This paper describes how our simulation facility software architecture has been adapted so that it
could be reused for embedded simulation. We thus provide a case study illustrating
characteristics of a system architecture that allow it to be long-lived by evolving not only to
changing requirements due to technological and methodological changes but also changes due to
new and previously unthought-of patterns of system utilization. We also share what we have
learned about the development of embedded software systems that need to be able to run without
human operator intervention.

FC & SL Page 1 Last saved 7/9/2003 8:44:00 AM

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
23 JUN 2003

2. REPORT TYPE
Journal Article

3. DATES COVERED
 22-05-2003 to 22-06-2003

4. TITLE AND SUBTITLE
Reusing a Simulation Facility Software Architecture for Embedded
Simulation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Frank Cioch; Scott Lohrer

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computing and Software Systems,University of Washington, Bothell Box
358534,18115 Campus Way N.E.,Bothell,WA,98011

8. PERFORMING ORGANIZATION
REPORT NUMBER
; #13899

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#13899

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In 1992 we began the development of a ground vehicle simulation software architecture that was
specifically designed for evolvability. This architecture along with its supporting development processes
and standards was reused throughout the 1990?s on a variety of Army programs. We have now taken this
software architecture, which was designed for stationary simulation in crewstations in a laboratory
environment and reused it to add embedded simulation capabilities to fielded ground vehicles. The purpose
of embedded simulation is to enhance soldier effectiveness both before and during actual battlefield
conditions. As a result, in a fielded ground vehicle, the computer specialist responsible for setting up,
starting, controlling, monitoring and stopping the simulation is not present. Unlike in a laboratory
environment, in a fielded vehicle the simulation software itself is responsible for performing these
functions. This paper describes how our simulation facility software architecture has been adapted so that
it could be reused for embedded simulation. We thus provide a case study illustrating characteristics of a
system architecture that allow it to be long-lived by evolving not only to changing requirements due to
technological and methodological changes but also changes due to new and previously unthought-of
patterns of system utilization. We also share what we have learned about the development of embedded
software systems that need to be able to run without human operator intervention.

15. SUBJECT TERMS
reuse, legacy systems, evolvability, long-lived systems, technology transfer, software architecture,
embedded simulation, distributed simulation, middleware, architectural degradation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

Public Release

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Biographical Information

Frank Cioch is a software engineer, with degrees in math, statistics and computer engineering,
and a doctorate in Computer and Communications Sciences from the University of Michigan.
After obtaining his Ph.D. in 1985, he taught at Oakland University in the greater Detroit area
until Autumn 2000, when he started teaching at the University of Washington, Bothell. Dr.
Cioch’s technical interests derive from his basic interest in software comprehension, both as it
relates to software’s internal characteristics and to its utilization in a particular environment. His
specialty is assessing the degree of fit of software engineering techniques, tools and methods to
any given situation, and tailoring their application to enhance their effectiveness. His practical
experience includes serving as a contractor for the U.S. Army, consulting for automobile-related
companies in the Detroit area and participating in the failure of two start-up companies.

Scott Lohrer is a computer engineer with a degree in electrical engineering. After obtaining his
BSEE he worked for a year writing control software for heat treatment furnaces at a private
company before coming to work for the Army. Scott has spent over nine years working in the
VETRONICS area of TARDEC developing simulation. He enjoys working with the cutting
edge technology that is necessary in the Army and seeing it transition to new systems for the
soldier.

FC & SL Page 2 Last saved 7/9/2003 8:44:00 AM

1. Introduction
In 1992 we began the development of a ground vehicle simulation architecture that was
specifically designed for evolvability. The architecture was developed using an evolutionary life
cycle model embedded in Boehm’s (1988) spiral life cycle model. A discussion of the early
versions of the architecture can be found in Cioch, et. al. (1994). The evolvable software
architecture was used throughout the 1990’s for all simulations developed in the Vetronics
Simulation Facility (VSF) at the Tank-Automotive Research, Development and Engineering
Center (TARDEC). During this time it was used by a number of teams to support a variety of
ARMY programs (Cioch and Sieh, 1999; Cioch, et. al., 2000).

The VSF consisted of crewstations capable of representing different vehicles through both
reconfigurable hardware and software, computer generated forces for friendly and threat
vehicles, and a stealth vehicle station for monitoring the battle in a computer-generated world.
The role of the VSF was to provide asynchronous near-real-time simulations of Army combat
ground vehicles that allowed new vehicle concepts to be evaluated by the soldier in a stand-alone
mode or in a force-on-force mode. VSF simulations provided realistic mockups of the interiors
of combat vehicles, especially their controls and out the window views.

The VSF mission required that TARDEC engineers be capable of quickly developing new
vehicle simulations to evaluate new crewstation concepts such as panoramic and helmet mounted
displays and new vehicle concepts such as mobility and weapons system models. Therefore, in
addition to being used for simulation exercises and demonstrations, the VSF facilities were used
by engineers to develop new simulations.

The software architecture that we developed was able to continually evolve into handling more
sophisticated simulations as well as technological changes to the VSF itself. Although the VSF is
no longer operational, the evolvable software architecture is now being used on embedded
simulation, a substantially different type of ARMY program with significantly different
requirements. Embedded simulation is an emerging technology in the research and development
stage.

The basic idea of embedded simulation is to put simulation capability on fielded ground vehicles.
During its operation the embedded simulator would be using actual values from vehicle
hardware and software subsystems to perform its functions. The embedded simulation could be
run in either operational or stationary mode. In operational mode the mobility and weapons
systems of the vehicle are fully operational and the simulator uses values from them to perform
its functions. In stationary mode simulated vehicle systems models provide values during the
execution of the simulation exercise.

Embedded simulation would be used to enhance soldier effectiveness both before and during
actual battlefield conditions. In operational mode the embedded simulator would provide
support to the soldier while on the move during battlefield operations by augmenting the soldiers
sights with a virtual out the window view of the battlefield terrain. For example, a birds-eye
view of the battlefield terrain with the friendly and enemy forces positioned on that terrain could
augment the soldier’s limited view from the vehicle’s sights or Indirect Vision Displays (IVDs).
In stationary mode the simulator would provide the soldier with the capability for embedded
training and mission rehearsal using a virtual out the window view before the missions were
actually carried out.

FC & SL Page 3 Last saved 7/9/2003 8:44:00 AM

In the VSF a human operator was always present to set up the simulator, start the required
hardware and software systems and monitor the soldier’s use of the simulator. In embedded
simulation the computer specialist that starts, stops and controls the simulator is not present. On
the battlefield, the simulation software itself becomes responsible for self-starting, self-stopping
and self-correcting in the event of any malfunction.

The VSF software architecture has been integrated into an embedded simulation software
architecture. This new architecture meets new embedded simulation program requirements as
well as all of the old VSF evolvability requirements. This paper describes the new architecture
and how it addresses the requirements of the embedded simulation program. First we will
describe how our system architecture relates to existing knowledge of software and simulation.

1.1 The Problem

In 1992 we started the first version of our object-oriented architecture for our distributed near-
real time simulation system [Cioch, Brabbs and Kanter, 1994]. It is basically a message-oriented
middleware architecture that is based on the object-oriented design principles of information
hiding, collaboration and responsibility, and separation of concerns [Rumbaugh, 1991; Wirfs-
Bock, 1990]. Over the years we have been able to evolve the architecture to continue to meet
new requirements [Cioch and Sieh, 1999; Cioch, Brabbs and Sieh, 2000].

Over the past decade there has been a growing influence of design patterns in software
development [Gamma et. al., 1995; Buschmann, et.al., 1996]. In the past few years, reusable
design patterns for distributed system development have appeared [Schmidt, et.al., 2000;
http://www.hillside.net] These design patterns are starting to be embodied in commercial off-the-
shelf (COTS) components and middleware frameworks for distributed system design. There are
now a number of viable candidate frameworks such as CORBA [http://www.omg.org/],
ACE/TAO [http://www.cs.wustl.edu/~schmidt] and HLA
[https://www.dmso.mil/public/transition/hla/] upon which we could reengineer our architecture.

We are thus faced with the decision of whether to re-engineer our simulation system architecture
using one of these middleware frameworks or whether instead to continue to evolve our existing
message-oriented middleware architecture, which has been specifically designed to meet our
particular requirements. The answer has not been obvious - there are risks involved in adopting
a middleware framework. These risks apply not only to distributed simulation design, but in
various ways to all tool adoption decisions.

One risk is quality of service (QoS). In order to be a viable alternative, a middleware framework
has to provide the same level of performance, security, etc. as our current system architecture.
For example, in our case we had have had continuing questions whether CORBA would allow us
to meet our distributed system near-real time performance requirements [Gokhale, et.al., 1997;
Schmidt, 2003].

A second risk has been the lack of standardization and the possibility of selecting the wrong
framework. It is difficult to decide which framework to use – HLA, CORBA, ACE, or another
framework. We have been concerned that we would make the wrong choice and would have to
re-architect yet again as the industry standard emerged over time. Our decision has been

FC & SL Page 4 Last saved 7/9/2003 8:44:00 AM

complicated by the fact that HLA is emerging as a military simulation standard while CORBA is
emerging as an industry standard.

A third risk is that the framework would not allow us to meet all key functional requirements,
either because it lacked key functionality or because we could not figure out how to use it to
meet our needs. The possibility that we could incur the costs of ramping up to learn the new
technology, only to find that we could not make it meet our needs, has been a significant
concern.

This has been one of the key issues facing both the developers and the users of reusable
components. Fischer (1987) argues that to fully exploit the benefits of software reuse,
information must be provided that helps software developers determine what the reusable
software does, when it is appropriate to use it, how to use it, and how to tailor it for their specific
needs. In their survey of reuse issues and research directions, Mili et al. (1995) make the point
that successful reuse depends upon locating, evaluating and tailoring the reusable software.
They describe two stages for reusing software: acquisition and adaptation. Acquisition requires
semantic knowledge for using the component in order to assess the reusable software’s
usefulness for the problem at hand.

A fourth risk is a possible significant impact of the framework on our existing software
development processes. Because the introduction of a new technology typically requires
modification of existing software development processes, it can be disruptive and expensive to
change to a new technology. Schmidt and Fayad (1997, p.86) describe the lessons they have
learned working for many companies over the past decade building and using reusable object-
oriented frameworks and applications: “[s] uccessful reuse generally requires the presence of
certain key non-technical prerequisites. Many political, economic, organizational, and
psychological factors can impede the successful reuse of distributed software.” In their
discussion of reusing object-oriented frameworks, Sparks et al. (1996) make a similar point - the
use of frameworks requires more discipline in design decision making, requiring more technical
and management reviews. Jacobson et al. (1997) says that a common misconception about
software reuse is that it is primarily a matter of introducing the appropriate technology. It is that
and everything else – management, organization, architecture, processes, investment, and
persistence.

This risk is not limited to the adoption of reusable components and object-oriented frameworks.
In their discussion of the difficulty of transitioning all types of software technology, Fowler and
Maher (1992) discuss changes in work habits that a new technology may cause. Gillies and
Smith (1994) make the point that the management of people and the effect of change on them is
crucial to the successful implementation of software engineering tools and methods. In their
discussion of why some organizations are successful while others struggle with CASE
implementation, Corbitt and Norman (1989) argue that the introduction of new technology takes
place more effectively when the procedure being automated is already an accepted, and valued,
procedure. In his discussion of the relationship between CASE planning and the software
process, Humphrey (1989) suggests that the most important CASE planning guideline is that an
organization develop their process and get it under control before or during CASE installation,
but not after. Leonard-Barton (1988) suggests that getting new technologies up and running in

FC & SL Page 5 Last saved 7/9/2003 8:44:00 AM

daily operations is at least as challenging as their invention. When discussing ways to evaluate
software engineering tools for possible adoption by an organization, Topper (1991) argues that
the development team has to adapt the development methods to fit the tool as well as adapt the
tool to fit the methods used by the team.

We have found it highly advantageous to develop tailored software engineering processes to
support the software architecture [Cioch and Sieh, 2000]. These would need to be modified to
support the use of an object-oriented framework such as CORBA, ACE or HLA.

These types of risks may be one of the reasons for the popularity of using object-oriented
wrappers to participate in HLA federations [Lohrer and Cioch, 1998]. In September of 1996, the
Under Secretary of Defense for Acquisition and Technology issued a mandate that HLA be
applicable to all DoD simulations. This mandate caused a problem for agencies with legacy
systems that were actively utilized, particularly when funding wasn’t available for upgrading the
legacy systems. The wrapper approach is to keep your existing architecture to as great an extent
as possible and to add an input/output wrapper that takes care of all data exchanges with other
simulations in the federation. This allows systems that do not have anHLA software architecture
to interact with those that do. An alternative, yet similar approach is to use a commercial
Gateway to communicate with other participants within the federation. [Paterson, Hougland,
Sanmiguel, 2000] The scheme allows DIS compatible simulations to now participate in an HLA
federation. Each scheme has its shortcomings. With the gateway, the user is limited to the
federation that the tool will support. With the wrapper, this approach can lead to laborious
maintenance to alter FOM data and in each case optimal performance could be questioned.

Given these considerations, we decided to continue to evolve our long-lived legacy system to
meet new requirements rather than by re-architecting the system using a collection of interacting
components or an object-oriented framework. We have developed a working version, which we
have demonstrated for the VETRONICS Technology Testbed program. [Bounker, Brabbs,
Adams, 1999].

This paper will illustrate the object-oriented architectural design principles underlying our newly
evolved architecture and will show how the architecture relates to the embedded simulation
requirements that motivated it. Although we have been satisfied with the new architecture and it
meets all of our requirements, we show that our approach has not been risk free. We will see that
some architectural degradation has begun to occur as some of the requirements have become
significantly different from those that motivated the original system architecture. The case study
presented here can thus also be used as an example of the ways in which architectural
degradation can occur over time as an object-oriented legacy system evolves.

In the next section of the paper we briefly summarize the VSF software architecture and the
evolvability requirements that it had to satisfy. We then discuss in detail the requirements of the
embedded simulation program and how the VSF software architecture has been incorporated into
the embedded simulation software architecture to meet those requirements.

2. The Purpose of the Evolvable VSF Software Architecture

FC & SL Page 6 Last saved 7/9/2003 8:44:00 AM

In 1992 TARDEC initiated the development of the VSF. The VSF was a research and
development resource for the evaluation of vehicle concepts. The role of the VSF was to provide
asynchronous near-real-time simulations of Army combat ground vehicles emphasizing soldier
machine interface development and testing. The VSF was the soldier-in-the-loop portion of a
virtual prototyping process, allowing new vehicle concepts to be evaluated by the soldier in a
stand-alone mode or in a force-on-force mode.

The VSF consisted of crewstations capable of representing different vehicles through both
reconfigurable hardware and software, computer generated forces for friendly and threat
vehicles, and a stealth vehicle station for monitoring the battle in a computer-generated world.
The VSF components were capable of running stand-alone at TARDEC or interoperating with
other defense simulators using the Distributed Interactive Simulation (DIS) interoperability
standard.

VSF simulations provided realistic mockups of the interiors of combat vehicles, especially their
controls and out the window views. A simulated vehicle was partitioned into UNIX processes
that ran in a parallel, distributed fashion on Silicon Graphics computers. The processes
transferred their state information to each other through shared memory, message queues and a
LAN, allowing them to perform as an integrated vehicle. Each simulated vehicle interacted with
friendly and enemy combat systems through a DIS network interface.

The VSF mission required that TARDEC engineers be capable of quickly developing new
vehicle simulations to evaluate new crewstation concepts such as panoramic and helmet mounted
displays and new vehicle concepts such as mobility and weapons system models. Therefore, in
addition to being used for simulation exercises and demonstrations, the VSF facilities were used
by engineers to develop new simulations. It was not uncommon for the VSF to support a number
of different development programs at the same time, so access to hardware and software was
often limited.

In order to achieve its mission, the VSF’s simulations and their components had to be evolvable
to accommodate both technological and methodological advances. We developed a software
architecture that was able to continually evolve into handling more sophisticated simulations.
TARDEC engineers used this evolvable software architecture to develop all VSF simulations.

Two teams within TARDEC utilized the software architecture to develop, with contractor
support, simulations for a variety of Army programs. One team used the software architecture to
develop simulations to support the Bradley Fighting Vehicle and Anti-Armor Advanced
Technology Demonstration (A2-ATD) simulation programs. A second team used the software
architecture for the Crewman’s Associate Future Combat System, Advanced Abrams
Crewstation Program and Future Scout Crewstation Prototype.

2.1 The Requirements that the VSF Software Architecture had to Satisfy

The VSF software architecture was derived not only from requirements of the simulations
themselves but also requirements concerning the utilization of VSF facilities for simulation
development. That is, both the simulations and the VSF facilities had to be evolvable to
accommodate new technological advances. Four requirements motivated the development of the
evolvable VSF software architecture.

1. Evolvability: Easy to incorporate new vehicle concepts into simulations

FC & SL Page 7 Last saved 7/9/2003 8:44:00 AM

Simulations developed suing the software architecture had to be decomposed so that new
crewstation and vehicle concepts and models could be readily incorporated. For example, was
desirable that a proposed new weapons system model be easily substituted for the existing model
so that it could be evaluated (plug-and-play, or at least readily modifiable, software components).

2. Evolvability: Ability to accommodate new hardware and software technology

New software and hardware technologies had to be accommodated by the VSF so it would not
become technologically obsolete over time. The facility itself had to be technologically
evolvable. As a result, VSF legacy simulations also had to be evolvable to technological changes
to the VSF over time. For example, upgrades to more powerful computers and networking
technology in the VSF must not result in difficult and costly legacy simulation system upgrades.

3. Interoperability: Simulations comply with evolving military interoperability standards

Simulations developed using the software architecture had to be compliant with evolving
military interoperability standards so that they could participate in exercises with other
simulations. Originally, this meant compliance with the DIS standard. All DIS compliant legacy
simulations had to evolve to become High Level Architecture (HLA) compliant.

4. Reconfigurability: Reconfigurable assignment of simulation processes to VSF computers

VSF simulations had to be able to run on many different combinations of computers in the
facility. This was due to not only monetary constraints but also because it was undesirable to
have development bottlenecks resulting from over-utilized and under-utilized computers. During
development, balanced usage of all computers in the facility was desired. For example, if two
teams were working on development, even during peak periods both teams should be able to find
free computers in the facility on which to perform development.

2.2 The Evolvable VSF Software Architecture
The VSF software architecture, which has been incorporated into the embedded simulation
software architecture, is a scaled-down, application-specific, object-oriented framework for
distributed software (Schmidt and Fayad, 1997). It is based on the design principle that vehicle
subsystems and their interactions can be used to identify a vehicle simulator’s software
components and their interactions. A VSF simulation consisted of parallel execution of UNIX
processes representing vehicle subsystems, such as mobility and weapons systems. We
discovered that providing a minimal set of asynchronous, near-real-time data communication
mechanisms could simulate a wide class of vehicle subsystem interactions. This minimal
interface included a mechanism for definition of the structure and type of the data to be
exchanged and mechanisms for event data and continuous data exchange. The VSF software
architecture centers around a Process Interface Unit (PIU) that defines, provides and
encapsulates interprocess communication (IPC).

As shown in Figure 1, the PIU binds together independent processes into a cohesive vehicle
simulation. It serves as an intermediary for all data exchanged between the software processes.
To send data between processes, a sending process sends data to the PIU. The PIU routes the
data to the desired destination process. Direct communication between processes does not take
place.

FC & SL Page 8 Last saved 7/9/2003 8:44:00 AM

process
locationsPIU

weapons systemsnetwork interface
unit (NIU)

mobility SMIworldCGFI

configuration file

. . .

Figure 1: PIU as an Intermediary for Data Communication

Communication between processes is performed using a producer/consumer model. Processes
can be both producers and consumers. The VSF architecture is driven by the need to make the
routing of data from the producer to the consumer transparent. The producer does not know who
the consumers are, whether they are on the same host or how the data is getting to the consumers.
The producer and consumer will interface to a set of logical PIU communication functions that
will take care of all these details.

As described in detail in Cioch et. al. (2000) and shown in broad terms in Figure 2, the PIU is
responsible for both encapsulating IPC and providing an application programmers’ interface
(API) for VSF developers.

process
locations

PIU

mobility SMI

configuration fileICD Table
(routing rules)

EventSend(masterPower)

ContDataRecv(gauges)

ContDataSend(gauges)

EventRecv(masterPower)

Figure 2: PIU ICD Table and Process Locations File

The PIU encapsulates IPC. The actual mechanisms used to perform data communication, e.g.,
sockets, shared memory, message queues, is completely hidden within the PIU. The mechanisms
used by the PIU to provide data exchange between processes executing on the same host is
UNIX System V shared memory and UNIX message queues. The PIU accomplishes data
exchange between processes executing on different hosts using sockets connected by FDDI and
Ethernet.

As illustrated in Figure 2, a configuration file is used to specify the location of UNIX software
processes throughout a LAN. All routing information is invisible to sender and receiver. The
actual mechanisms used to perform data communication is completely hidden within the PIU. No

FC & SL Page 9 Last saved 7/9/2003 8:44:00 AM

source/destination or process location information appears in any of the send() and receive()
functions executed by the simulation processes.

The PIU provides an API for developers to exchange data between processes. The PIU contains
public type definitions of all data to be exchanged along with the definition of a piuComm class
containing send() and receive() member functions for each of these public data types. The
piuComm class is linked to each process executable during system build. Each process links in
the same piuComm class.

If a developer wants to develop a mobility model that can participate in a VSF simulation, it
must be PIU compliant. This means that it must link in the correct version of the PIU, instantiate
a piuComm object, and perform the sends and receives expected of it by the other processes.
Utilization of the VSF API provided by the PIU has become routine for VSF developers.

In order for the architectural design strategy to work, all interactions between VSF processes
have to be fully specified. The VSF interface specification consists of an ICD Table and c++
type definitions for the data to be exchanged. The ICD Table specifies the required data
exchange between processes. These process data communication requirements, which describe
the interaction of each process with other processes, arise through the identification of the
functional requirements of the processes.

A piuComm.h++ header file specifies the actual c++ data types for each data type in the ICD
Table. The piuComm class definition contains a pair of send() and receive() member functions
for each data type. A member function EventListSize() is provided to allow the client code to
see if any events have occurred that need to be handled. A constructor is provided so that a
piuComm object can be instantiated for each process involved in the simulation. A list of process
IDs is given for all processes involved in the simulation. The argument list of the piuComm class
member functions contains no routing information such as consuming processes or computers on
which consumers are currently executing.

An example minimal vehicle with soldier-machine interface (SMI) and mobility processes will
be used to define a sample ICD Table. SMI sends an event to mobility telling when the vehicle is
turned on or off (master power). Mobility sends gauges information containing the heading of
the vehicle to SMI for display (gauges osstate). These data communication requirements are
captured in the following ICD Table:

DATA TYPES SMI mobility
gauges_osstate_type R W
master_power_state_type W R

 Table 1: Minimal Vehicle ICD Table

The following is the public portion of the piuComm.h++ header file for minimal:
enum processID_type { SMI, mobility }
struct master_power_state_type { // fields appear here }
struct gauges_osstate_type { // fields appear here }
class piuComm {
public:

FC & SL Page 10 Last saved 7/9/2003 8:44:00 AM

 piuComm(processID_type processID);
 EventSend(master_power_state_type);
 EventRecv(master_power_state_type&);
 int EventListSize();
 ContDataSend(gauges_osstate_type);
 ContDataRecv(gauges_osstate_type&);
private: // implementation details appear here };

Mobility and SMI process client code use the resources provided in the piuComm.h++ header
file to perform the following tasks. Mobility instantiates a piuComm object and uses it to send its
gauges data to SMI. SMI uses its piuComm object to check to see if any events have occurred,
and when they do it reads the data into its local copy of gauges.

2.3 How the Architecture Supported the Requirements
1. Evolvability: Easy to incorporate new vehicle concepts into simulations

As program requirements became more solidified and defined, or as a vehicle simulation was
used over time, the vehicle modeled changed. If a vehicle needed to incorporate a new feature,
such as radio communication, the PIU evolved with the simulation to support the new feature.
The team agreed upon changes to the ICD Table and piuComm header file. The team members,
including both TARDEC engineers and government contractors located off-site, independently
updated their processes from the agreed-upon interface specifications. The PIU developer used
the steps given in the PIU Maintenance Guide to tailor the PIU for the change. A suite of
documents has been developed to support the maintenance process (Cioch, et. al., 1996).

Interface specification was a prerequisite for the software component plug-and-play capability of
the VSF architecture. Because all interfaces had been defined in advance over time, enhanced
processes could be successively substituted into a simulation as they became available. A new
model could be directly substituted for an existing model if the interface was the same. If the
new model required modifications to the interface, the developers followed the interface
specification process outlined above to make the required modifications.

2. Evolvability: Ability to accommodate new hardware and software technology

The PIU was designed so changes made to the internals of the PIU would not require simulation
developers to learn a new programming interface. In particular, the PIU was designed to
encapsulate the actual IPC implementation. As new technologies became available, the PIU
evolved to make use of new technologies as needed. For example, the PIU was modified to
allow IRIX processes running on silicon graphics computers and LINUX processes running on
PCs to cooperatively participate in a simulation.

3. Interoperability: Simulations comply with evolving military interoperability standards

The PIU was designed so that it could remain compatible with evolving military interoperability
standards. For example, all DIS compliant legacy simulations had to evolve to become High
Level Architecture (HLA) compliant. The way in which the PIU architecture addressed this
technology transition process is described in Lohrer and Cioch (1998).

4. Reconfigurability: Reconfigurable assignment of simulation processes to VSF computers

VSF simulations were easily configured to run on many different combinations of Silicon
Graphics computers in the facility. The PIU provided IPC while the simulation was running in

FC & SL Page 11 Last saved 7/9/2003 8:44:00 AM

degraded mode. For example, when enough machines were not available, the PIU was
configured through the process locations configuration file to run on the available machines. As
expected, the simulator performance was degraded, but the simulation still ran. The ability to
run in degraded mode was desirable during development work. The ability to run in degraded
mode allowed for work to be done when all required resources were not available. Furthermore,
because process locations were contained in the configuration file and were easily changed,
many developers could work in the facility at the same time. This allowed for high utilization of
facility resources.

3. Embedded Simulation
The basic idea of embedded simulation is to put simulation capability on a fielded ground
vehicle. Simulation could be used to enhance soldier effectiveness both before and during actual
battlefield conditions. The vehicle could be run in two ways. It could be in full operational mode
with the simulator providing support to the soldier while on the move. In this case the soldier
would be using the real out the window view or a combination of real and virtual out the window
views. Second, the vehicle could be in stationary mode and the simulator would provide the
soldier with the capability for embedded training or mission rehearsal using a virtual out the
window view.

There are a significant number of technical obstacles that must be overcome before embedded
simulation can be used to enhance soldier effectiveness. The purpose of embedded simulation
research and development work is to study the technological feasibility of embedded simulation.
If successful, embedded simulation capability could become part of the standard package of
hardware and software capabilities of all ground vehicles fielded by the U.S. Army.

The Simulation, Training and Instrumentation Command (STRICOM) and TARDEC are
working together in this effort (Bounker, et. al., 1999). The embedded simulation program fits
under the general Army umbrella of horizontal technology integration (HTI), which strives to
reduce overall development costs through the development of configuration items that can be
used on different platforms.

At TARDEC, the embedded simulation effort is part of the Vehicle Electronics (VETRONICS)
Technology Testbed (VTT), supported by the Inter-Vehicle Electronics Suite (IVES) Science
Technology Objective (STO). The VTT program objective is to advance and apply the
technologies required for reduced crew operations of close combat vehicles. Embedded
simulation is an integral part of this effort.

This paper describes the embedded simulation software architecture and the requirements that
motivated its design. Although we have moved from stationary simulation in a simulation facility
to embedded simulation in a fielded ground vehicle, this architecture incorporates and reuses the
architecture of the VSF described above.

A prototype of our embedded simulation system was developed for the Interservice/Industry
Training, Simulation, Education Conference in 1999. That system was then enhanced and a
number of experiments have been conducted using the software architecture described in this
paper. The embedded simulation system has been demonstrated as part of a futuristic scout
vehicle that would be a part of the Army’s Future Combat System (FCS). These demonstrations
were a result of a consortium of Army Research Development and Engineering Centers (RDEC)
that make up the RDEC Federation. These demonstrations occurred at the 2000 and 2001

FC & SL Page 12 Last saved 7/9/2003 8:44:00 AM

Simulation and Modeling Acquisition Requirements Training (SMART) conferences, where the
vehicle’s operational embedded simulation enhancements were demonstrated. At the Armor
Conference 2001 at Fort Knox, Kentucky, the embedded training features of the embedded
simulation system were demonstrated.

The embedded simulation program has a number of different types of requirements that need to
be satisfied by the overall simulation software architecture. We will next describe these
requirements and then move on to the software architecture that has been developed to support
them.

3.1 Embedded Simulation Program Requirements
In this section the key requirements of the embedded simulation program are described. This
discussion will be used to set a context for the requirements of the embedded simulation software
architecture that is the focus of this paper.

1. Enhance the vehicle with simulation capability

The vehicle must be enhanced with simulation capabilities that promise to make the soldier more
effective on the battlefield. Three different types of simulation support need to be provided to
the soldier: support for battlefield operations, embedded training and mission rehearsal.

Simulation capabilities must support battlefield operations. While in operational mode the
weapons and mobility systems of the vehicle are operational and simulation is providing
enhanced capabilities to the soldier during actual battlefield conditions. The out-the-window
views are mixed: some are real and some are virtual views generated by the simulator. An
example battlefield operations capability is battlefield visualization, which gives the soldier a
simulator-generated virtual birds-eye view of the terrain on which the battle is taking place, with
the virtual placement of both friendly and enemy forces

Simulation capabilities must include embedded training. While in training mode the weapons
and mobility systems of the vehicle are inoperable and the out-the-window views are virtual
views generated by the simulator. An example embedded training capability is sustainment
training, which gives the soldier the opportunity to conduct training scenarios and see how
current performance compares to the results of previous training sessions. The soldier is able to
make comparisons by utilizing the After Action Review and Playback after the training sessions.

Simulation capabilities must include mission rehearsal. While in mission rehearsal mode the
weapons and mobility systems of the vehicle are inoperable and the out-the-window views are
virtual views generated by the simulator. Mission rehearsal provides the capability for a soldier
to walk through a battle plan in the virtual world generated by the simulator before actually
doing it under actual battlefield conditions.

2. Support a family of vehicles

The system that is developed must be developed as a separate independent system that can be
installed in fielded ARMY combat vehicles.

3. Automate simulator operator capability

For simulation exercises run in the VSF there was a simulation operator, a computer specialist
that assisted the soldier in setting up and starting the simulation, monitoring the simulation
exercise, and stopping the simulator when the exercise was over. In a fielded vehicle there will

FC & SL Page 13 Last saved 7/9/2003 8:44:00 AM

only be the soldier and soldiers are not expected to be computer specialists. Thus, the simulation
operator functionality must be automated to as great an extent as possible.

There are five different types of simulator operator capabilities that need to automated:
1. Setting up configuration files so that they have the desired values.
2. Starting up the computers and the simulation software processes.
3. Starting up other software systems that need to interact with the simulator.
4. Monitoring and controlling the system during execution and handling error conditions.
5. Shutting down the system and performing necessary housekeeping tasks.

4. Synchronicity

Ground vehicles operate synchronously. The embedded simulator must be synchronized so that it
interacts in a lock-step way with the vehicle itself. For example, readings of vehicle mobility
and weapons systems characteristics provided to the simulator must be current and accurate.
Second, the virtual and real worlds must be in alignment. For example, the location of the
vehicle, as well as friendly and enemy forces, in the virtual world generated by the simulator
must be exactly the same as the vehicle’s actual location in the real world. Without these
capabilities the simulator would not be able to support battlefield operations.

5. Ruggedization

The simulator hardware and software must fit on the vehicle and be capable of running off of the
vehicle’s power supply. Thus, the system must be ruggedized per military standards for an
onboard computer system.

6. Depot-mode operation

Within DoD, Embedded Simulation (ES) for training and Simulation Based Acquisition is a new
and untested concept. The purpose of the ES program is to study its technological feasibility
before a full commitment to it is made. The prototype must be developed so that this technology
transfer can be accomplished in stages rather than all at once.

Thus, the system, when in Training State, currently requires too much power to be able to
operate when the vehicle is in the field. In order to execute the embedded training feature, the
vehicle has to be in a “depot” mode where it has access to either a generator or wall outlet where
the vehicle can receive the additional power through its NATO Slave access. The reason for this
is that embedded training requires that all the Indirect Vision Displays (IVD) and the Sights be
simulated. This requires the resources of an additional six computers to render the driver’s
IVDs. Consequently, the system must be reconfigurable and be able to support different
combinations of computers and simulation process allocation to computers.

7. Each of the four VSF requirements

Each of the four VSF requirements is still a requirement of the embedded simulation program:

1. In order to support the embedded simulation program, the system must to be able to be
easily and readily upgraded to incorporate new ideas in embedded training, battlefield
visualization, and battlefield operational support.

2. In order to be compatible with other military systems, the system must be capable of
interoperating with military interoperability standards such as High-Level Architecture
(HLA).

FC & SL Page 14 Last saved 7/9/2003 8:44:00 AM

3. In order to be long-lived and evolvable, the system must be able to be modified to
incorporate new hardware and software technology as it becomes available.

4. In order to support its depot-mode requirement, the system must be reconfigurable.

3.2 Embedded Simulation Software Architecture
The embedded simulation software architecture is shown in Figure 3. Bold solid lines represent
communication paths related to the PIU-based VSF architecture and dotted lines represent new
lines of communication that will now be described.

The software architecture follows the HTI A-Kit/B-Kit paradigm. The vehicle hardware and
software interact directly with a system called the A-Kit. The A-Kit is vehicle specific and
contains the necessary hardware and software to connect to the actual vehicle hardware and
software. As part of the HTI paradigm, an A-Kit is developed for every vehicle. The description
of the A-Kit is not within the scope of this paper.

The simulation hardware and software is contained in an independent system called the B-Kit.
The B-Kit starts automatically upon vehicle startup and shuts down automatically upon vehicle
shut down. The soldier interacts with the simulation while performing embedded training and
mission rehearsal via a touch screen, programmable push buttons and a joystick that are part of
the standard vehicle hardware. No new additional hardware is required. Vehicle and soldier data
resulting from normal system operation like vehicle location and travel speed and direction are
sent directly from the vehicle’s A-Kit to the B-Kit. The B-Kit contains an A-Kit Interface
process that is responsible for all system interaction with the vehicle through the vehicle’s A-Kit.

FC & SL Page 15 Last saved 7/9/2003 8:44:00 AM

vehicle hardware and software

signal

process
locationsPIU

A-Kit InterfaceSim Control
Manager

CGFI SMIworldmobility

configuration file

scenario file scenario file scenario file scenario file

B-Kit

MODSAF

A-Kit

. . .

Figure 3. Embedded Simulation Software Architecture

The Simulation Control Manager is the portion of the B-Kit responsible for automating the
simulation operator capabilities and keeping the simulation synchronized with the vehicle. In
order to control the simulation it communicates with selected simulation processes, currently A-
Kit Interface and CGFI, using dedicated specialized methods in addition to communicating with
them via the PIU.

The PIU-based VSF architecture is an integral part of the B-Kit architecture. As in the VSF, the
PIU is responsible for interprocess communication. The A-Kit Interface uses the PIU to send
vehicle data to and from the simulation processes so that the simulator has data from which to
function. The A-Kit Interface uses the PIU to send and receive A-Kit simulation control data to
and from the Simulation Control Manager so that the latter can control the simulation.

3.2.1 Synchronicity, start-up and shut down - State Machine Behavior
The embedded simulation software architecture has been designed as a state machine to ensure
that the simulation and the vehicle are synchronized. This was a substantial shift from the VSF
architecture, where all processes operated asynchronously. In this section it will be shown that at
the architectural design level, this was achieved by having all simulation processes utilize the
ICD Table to send vehicle state data. At the detailed design level, the simulation control manager

FC & SL Page 16 Last saved 7/9/2003 8:44:00 AM

was designed to serve as the state controller. At the implementation level, all processes utilized
the vehicle state data to remain synchronized.

A ground vehicle equipped with embedded simulation capability can be in one of five states:
power up, operational, training, mission rehearsal and power down. The vehicle’s s A-Kit and
the B-Kit’s A-Kit interface send heartbeat data back and forth. This heartbeat is used for two
purposes: to tell the other whether it is still up and running and if so, what state it is currently in.
The A-Kit Interface uses the PIU to inform the Simulation Control Manager about changes to the
vehicle state.

When a vehicle state change occurs, the Simulation Control Manager uses the PIU to tell all of
the simulation processes to change state. Most state changes require that new simulation
processes and additional computers be started and some of the currently running processes
and/or computers be stopped.

The primary reason why software and hardware starting and stopping must be performed during
state changes is that if they were not, then the simulator would not be able to run off of the
vehicle power supply. It would require too many computers and too many hardware devices be
run simultaneously to accommodate all five vehicle states. The required amount of vehicle
hardware and software that need to be running at any given time varies depending upon vehicle
state:

1. Depending upon the vehicle state, vehicle IVD’s can switch between a real out the
window view to a virtual out the window view. When a real view is all that is required,
image generation software need not be running for that IVD or sight.

2. Depending upon vehicle state, additional computers and supporting software systems
need to be started. For example, in training state a separate computer is required to run
the drivers IVD’s for mission rehearsal and embedded training. It is undesirable to run
these additional computers during vehicle operational state.

3. Depending upon vehicle state, the behaviors of the Simulation Processes themselves
change. For example, in training and mission rehearsal state the processes must record all
behaviors for possible playback to the soldier. This additional functionality is neither
required nor desired during vehicle operational state.

As a result of a vehicle state change, the Process Locations file of the PIU changes and the ICD
Table data passed between processes that are running also changes. Therefore, all of the
processes participating in IPC communication via the PIU have to be stopped and possibly re-
started to reflect the new vehicle state. All of this is performed under the control of the
Simulation Control Manager.

The Simulation Control Manager sends a state change message to all simulation processes
running the PIU. It then shuts them down and restarts them. All Simulation Processes send a
ready message to the Simulation Control Manager after they are restarted and ready for data
transfer via the PIU. In order to avoid race conditions, a signal is used between the A-Kit
Interface and the Simulation Control Manager to ensure that they are both communicating with
the newly loaded PIU rather than the previously loaded PIU. A separate line of communication is
also required between the Simulation control Manager and the Computer Generated Forces
Interface Process because when necessary the latter is responsible for starting an additional
process and communicating with the MODSAF system that is running on that computer.

FC & SL Page 17 Last saved 7/9/2003 8:44:00 AM

At the architectural design level, to achieve this synchronous behavior we changed the way that
we utilized our ICD Table. In the VSF, all ICD Table data was simulation-related data. In the
embedded simulation architecture, we added vehicle state data to the ICD Table. By sending
vehicle state data to each other via the PIU, each process can remain synchronized with the
vehicle state. The enhanced ICD Table for the minimal example described above is given in
Table 2. All processes read and write the vehicle state data.

DATA TYPES SMI mobility Simulation Control A-Kit
 Manager Interface
gauges_osstate_type R W
master_power_state_type W R

vehicle_state_type R/W R/W R/W R/W

 Table 2: Minimal Embedded Simulation Vehicle ICD Table

Furthermore, in the VSF the ICD Table was tailored to a specific simulation. In the embedded
simulation architecture, each vehicle state has its own IPC requirements that can be captured in a
different ICD Table. This is because in each state different simulation processes are running and
each is performing some state-related functions that result in different ICD Table data transfer.
Instead of maintaining separate ICD Tables, the union of all ICD Tables is constructed to
account for all possible process sends and receives in all vehicle states.

For example, in the VSF mobility would always be sending gauges information to SMI.
However, even in the minimal embedded simulation ICD Table, the mobility process will not be
sending gauges information to SMI during operational state, only during training and mission
rehearsal. All possible reads and writes during all possible vehicle states are captured in the
embedded simulation ICD Table. This is a similar idea to the definition of a shared HLA FOM
that defines the entirety of possible federate communication in a federation (HLA web page
reference).

This discussion shows how the synchronicity, start-up and shutdown simulator operator
requirements are met. The next section describes how the configuration file set-up and
monitoring and control requirements were met.

3.2.2 Simulation operator set-up, and control – Scenario Files
During training and mission rehearsal, events must be generated at various points in time or
when the vehicle reaches pre-specified locations. In the VSF, a simulation operator would be
there to generate the data at the specified trigger points. In the embedded simulation program this
operator is not present.

To solve this problem, scenario files were constructed that contained two types of data:
simulation scenario data and simulation control data. The simulation control data contains both
the data to be sent and a specification of the trigger point. A standard format was developed so
that all possible types of trigger points could be specified. Table 3 shows an example scenario
file for the Command and Control (C2) process.

FC & SL Page 18 Last saved 7/9/2003 8:44:00 AM

The first section of the configuration file is meant for initialization data, in this case the
C2_Enable flag and the Time variable for sending Position reports. The remainder of the file
describes the specific scenario behavior for the process.

C2_ENABLE 1
TIME 300
RECV CALL_FOR_FIRE ROGER_OVER

Table 3: Example Scenario File

With an operator, the operator was required to monitor three types of event conditions: time,
event and position. For time based events, the operator would keep an eye on the amount of
simulation time that had expired and then at the specified moment, execute the desired event.
This is accomplished one of two ways with the scenario file. For events that are to occur at some
set frequency, such as the Position Reports in our example, a time variable is set to the desired
number of seconds. For events that are to be triggered at a particular instance in the simulation
time, an alternate approach would be used. In this case the trigger would be the number of
seconds that have passed in the simulation. The process responsible for causing the event would
have to poll the Simulation Control Manager for the current simulation time. When the desired
time has occurred then that event would be triggered. This method wasn’t implemented because
the need didn’t exist; however, the capability is there.

Another condition that an operator would normally have to respond to would be some type of an
event, such as an incoming radio message. From the above table the event trigger in this case
would be a RECV message of type CALL_FOR_FIRE. When this message is received, the
operator would respond with a voice or text acknowledgement. Utilizing the scenario file, the
trigger condition is defined as RECV, the constraint is of type CALL_FOR_FIRE and the
response is a string containing “Roger Over”. This string is read into the process and then sent
out to the rest of the simulation.

The last interaction that an operator would perform would be to start an event when the
simulated entity crossed a specified plane within the terrain. A scenario may call for an enemy
to change positions when the simulated entity reached a particular destination. The operator
would then have to execute some command through the CGF GUI to relocate the enemy
vehicles. In the ES environment, the scenario file would contain the terrain location as the
trigger condition, a tolerance and then the action that is to take place. The action that is to occur
would be commands to the CGF that would be routed through the CGFI process using the above
example.

This discussion illustrates how utilizing the scenario files, the operator set-up and control
requirements were met.

3.3 Relationship Between Program Requirements and Software Architecture
In this section the embedded system program requirements are related to the software
architecture.

FC & SL Page 19 Last saved 7/9/2003 8:44:00 AM

1. Enhance the vehicle with simulation capabilities

The specific embedded training, mission rehearsal and battlefield operation support capabilities
of the simulator are the responsibility of the Simulation Processes. Each of these processes is the
responsibility of a software developer.

2. Support a family of vehicles

This requirement is supported by the HTI A-Kit/B-Kit paradigm. The portion of the B-Kit
architecture that deals with this requirement is the A-Kit Interface module. By separating into a
single module the responsibility for interacting with the vehicle’s A-Kit, the impact of change
due to differing vehicle A-Kits is localized to one module.

3. Automate simulator operator capability

As described above, this requirement is satisfied primarily by the cooperation between the A-Kit
Interface, the Simulation Control Manager, the PIU, and the Simulation processes, under the
direction and control of the Simulation Control Manager.

4. Synchronicity

The vehicle runs synchronously and the PIU runs asynchronously. The B-Kit architecture
described above reconciles these different modes of operation. This requirement is satisfied by
the cooperation between the A-Kit Interface, the Simulation Control Manager, the PIU, and the
Simulation processes, under the direction and control of the Simulation Control Manager.

5. Ruggedization

The transition needed to be made from IRIX to LINUX and from silicon graphics mainframes to
PCs in ruggedized boxes. This requirement is satisfied by the PIU and was one of the primary
reasons that the PIU was retained as a key portion of the architecture rather than moving to HLA
or CORBA. The way in which the PIU-based architecture satisfies this requirement is described
in detail in Cioch and Sieh (1999) and is summarized above.

6. Depot-mode operation

This requirement is satisfied by the PIU and was one of the primary reasons that the PIU was
retained as a key portion of the architecture rather than moving to HLA or CORBA. The way in
which the PIU-based architecture satisfies these requirements is described in detail in Cioch and
Sieh (1999) and is summarized above.

7. Each of the four VSF requirements

Because the PIU is incorporated into the B-Kit architecture, the B-Kit architecture can satisfy
each of the four existing VSF requirements. The way in which the PIU-based architecture
satisfies these requirements is described in detail in Cioch and Sieh (1999) and is summarized
above.

4. Conclusions

In this paper we presented the current state of our continuing case study involving the evolution
of a long-lived object-oriented simulation system. We have demonstrated that through the
careful application of object-oriented design principles and associated development processes, it

FC & SL Page 20 Last saved 7/9/2003 8:44:00 AM

is possible to continue to update, with minimal architectural degradation, an object-oriented
legacy simulation system software architecture to meet new requirements, even when the
requirements change significantly.

In general, two significant lessons learned over the course of our decade of research are that (1)
the object-oriented design principles of information hiding and separation of concerns can be an
effective way to promote software architecture reuse, and (2) it is advantageous to develop
tailored software engineering processes to accompany the architecture.

In this paper we have focused on point (1) by describing how we have used the object-oriented
design principles in our software architecture and how they relate to our evolvability
requirements for embedded simulation. We have demonstrated that even though our
requirements changed significantly when we moved to an embedded simulation environment, we
were able to evolve our system architecture to meet those new requirements.

As one might expect, over time our requirements are becoming increasingly dissimilar from the
original requirements. As illustrated in the earlier description of the architecture, we have had to
sidestep the PIU in some cases, indicating that we are starting to experience some architectural
degradation in our system. It is possible that the next iteration of the architecture will require a
more significant architectural reengineering and the utilization of components or a middleware
framework.

The risks of adopting a middleware framework are also becoming smaller. As of this writing, an
ACE/TAO real-time CORBA ORB is available for real-time applications [Schmidt and
Buschmann, 2003; http://www.cs.wustl.edu/~schmidt] so the QoS risk in using a middleware
framework appears to be getting smaller. With the increased literature on design patterns that
underlie the middleware frameworks, the risk of our being able to effectively utilize a framework
based on these patterns is also becoming smaller. Through the utilization of new software
development technologies such as aspect-oriented programming [http://www.aspectj.org;
http://aosd.net/], middleware frameworks are becoming increasingly versatile and widely
applicable. At some point the economic factors may swing the balance to our using components
or a middleware framework to meet our future requirements.

5. Acknowledgments
This work was supported in part by TARDEC under Contract No. DAAE07-94-C-R006 and
under the auspices of the U.S. Army Research Office Scientific Services Program Contract No.
DAAH04-96-C-0086. We would like to thank all of the VSF team members for their
contributions to the VSF and embedded simulation software architectures.

6. References
Boehm, B., "A Spiral Model of Software Development and Enhancement," Computer, Vol. 21,
No. 5, May 1988, pp. 61-72.

FC & SL Page 21 Last saved 7/9/2003 8:44:00 AM

Cioch, F. A., J. Brabbs and S. Kanter, “Using the Spiral Model to Assess, Select and Integrate
Software Development Tools,” Proceedings of the 3rd Symposium on Assessment of Quality
Software Development Tools, IEEE, 1994, pp. 14-28.

Cioch, F.A. and L. Sieh, “A Software Architecture for Interoperable, Evolvable, Near Real-Time
Simulations,” Simulation, Vol. 72 No. 2, 1999, pp. 78-89.

Cioch, F.A., J. Brabbs and L. Sieh, “The Impact of Software Architecture Reuse on
Development Processes and Standards,” Journal of Systems and Software, Vol. 50, Issue 3,
March 2000, pp. 221-236.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modeling
and Design, Prentice-Hall, 1991.

Wirfs-Brock, R., B. Wilkerson and L. Wiener, Designing Object-Oriented Software, Prentice-
Hall, 1990.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns – Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture, Vol. 1: A System of Patterns, Wiley, 1996.

Schmidt, D.C., M. Stal, H. Rohnert and F. Buschmann, Pattern-Oriented Software Architecture,
Vol. 2: Patterns for Concurrent and Networked Objects, Wiley, 2000.

References to patterns can be found at http://www.hillside.net

References to CORBA can be found at http://www.omg.org

References to ACE/TAO can be found at http://www.cs.wustl.edu/~schmidt

References to the HLA Standard can be found at at https://www.dmso.mil/public/transition/hla/

Gokhale, A., Schmidt, D. C., Harrison, T., and G. Parulkar, “Towards real-time CORBA”, IEEE
Communications Magazine, Vol. 14, No. 2, February 1997.

Schmidt, D. and F. Buschmann, “Patterns, Frameworks, and Middleware: Their Synergistic
Relationship,” Proceedings of the 25th International Conference on Software Engineering, May
2003, IEEE, pp. 694-704.

Fischer, G., “Cognitive View of Reuse and Redesign,” IEEE Software, Vol. 11, No. 5, July,
1987, pp. 60-72

Mili, H., Mili, F. and A. Mili, “Reusing Software: Issues and Research Directions,” IEEE
Transactions on Software Engineering, Vol. 21, No. 6, June 1995, pp. 528-561.

Schmidt, D. C. and M. E. Fayad, “Lessons Learned Building Reusable OO Frameworks for
Distributed Software”, Communications of the ACM, Vol. 40, No. 10, October 1997, pp. 85-87.

Sparks, S., Benner, K. and C. Faris, “Managing Object-Oriented Framework Reuse,”, Computer,
Vol. 29, No. 9, September 1996, pp. 52-61.

Jacobson, I,, Griss, N. G. and P. Jonsson, “Making the Reuse Business Work,” Computer, Vol.
30, No. 10, October 1997, pp. 36-42.

FC & SL Page 22 Last saved 7/9/2003 8:44:00 AM

Fowler, P. J. and J. H. Maher, Jr., “Foundations for Systematic Software Technology
Transition,” 1992 SEI Technical Review, Software Engineering Institute, Carnegie-Mellon
University, January 1992.

Gillies, A. C. and P. Smith, Managing Software Engineering: CASE studies and solutions,
Chapter 7, “People Matter,” Chapman & Hall, London, 1994.

Corbitt, G. F., and R. Norman, “Implementation: The Operational Feasibility Perspective,”
Journal of Systems Management, Vol. 40, No. 5, May 1989, pp. 32-33.

Humphrey, W. S., “CASE Planning and the Software Process,” Software Engineering Institute
Technical Report, CMU/SEI-89-TR-26, ESD-TR-89-34, May 1989.

Leonard-Barton, D. “Implementation as Mutual Adaptation of Technology and Organization,”
Research Policy, Vol. 17, No. 5, October 1988, pp. 251-267.

Topper, A., “Evaluating CASE Tools: Guidelines for Comparison,” American Programmer, Vol.
4, No. 7, July 1991, pp. 12-20.

Daniel J. Paterson, Erik S. Hougland, Ph.D., Juan J. Sanmiguel; “A Gateway/Middleware HLA
implementation and the extra Services that can be provided to the Simulation”, 2000.

Schmidt, D. C. and M. E. Fayad, “Lessons Learned Building Reusable OO Frameworks for
Distributed Software”, Communications of the ACM, Vol. 40, No. 10, October 1997, pp. 85-87.

Cioch, F. A., M. Palazzolo and S. Lohrer, “A Documentation Suite for Maintenance
Programmers,” Proceedings of the International Conference on Software Maintenance, IEEE,
1996, pp. 286-295.

Lohrer, S. and F. A. Cioch, “Using Layered API’s to Reduce HLA Transition Costs”, 1998
Spring Simulation Interoperability Workshop Proceedings (CD-ROM), Simulation
Interoperability Standards Organization, Orlando, FL, March 1998.

Bounker, P., J. Brabbs and C. Adams, “Low Cost Embedded Simulation System for Ground
Vehicles,” Proceedings of the 1999 Interservice/Industry Training, Simulation and Education
Conference (CD-ROM), National Training Systems Association, Orlando, FL, November 1999.

References to Real-Time CORBA can be found at http://www.cs.wustl.edu/~schmidt

References to aspect-oriented programming can be found at http://www.aspectj.org and
http://aosd.net/

FC & SL Page 23 Last saved 7/9/2003 8:44:00 AM

	reuse, legacy systems, evolvability, long-lived systems, technology transfer, software architecture, embedded simulation, distributed simulation, middleware, architectural degradation
	1. Introduction
	1.1 The Problem
	4. Conclusions

